

D.C. Petriu, N. Rouquette, Ø. Haugen (Eds.): MODELS 2010, Part II, LNCS 6395, pp. 123–137, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Selective and Consistent Undoing of Model Changes

Iris Groher and Alexander Egyed

Johannes Kepler University Linz
Altenbergerstr. 69, 4040 Linz, Austria

{iris.groher,alexander.egyed}@jku.at

Abstract. There are many reasons why modeling tools support the undoing of
model changes. However, the sequential undoing is no longer useful for
interrelated, multi-diagrammatic modeling languages where model changes in
one diagram may also affect other diagrams. This paper introduces selective
undoing of model changes where the designer decides which model elements to
undo and our approach automatically suggests related changes in other
diagrams that should be undone also. Our approach identifies dependencies
among model changes through standard consistency and well-formedness
constraints. It then investigates whether an undo causes inconsistencies and uses
the dependencies to explore which other model changes to undo to preserve
consistency. Our approach is fully automated and correct with respect to the
constraints provided. Our approach is also applicable to legacy models provided
what the models were version controlled. We demonstrate our approach’s
scalability and correctness based on empirical evidence for a range of large,
third party models. The undoing is as complete and correct as the constraints
are complete and correct.

1 Introduction

We believe that the very nature of software modeling is about exploring design
alternatives by trying out ideas and dismissing them if they are not satisfactory.
However, today, modeling languages solely capture the final state of the model of a
software system but fail to remember the many changes made along the way (the
design history [9] with its decisions [13]). To compensate, modeling tools provide
undo or version control mechanisms. However, these mechanisms capture the history
of changes chronologically and if an undo is desired then a designer is forced to
undoing changes chronologically (also undoing unrelated, intermittent changes).

This paper presents an approach for the selective undoing of design changes during
software modeling where previously discarded changes can be recovered without
having to undo unrelated, intermittent changes. Selective undoing is particularly
important during multi-view modeling (such as the UML with its many diagrammatic
views) because logically related model elements are intentionally spread across
independent diagrams to separate concerns [14]. Recovering a discarded model
element may then require the recovering of model elements in other diagrams – or
else risk causing inconsistencies in the model.

124 I. Groher and A. Egyed

Unfortunately, designers do not explicitly capture all dependencies among model
elements – nor would it be feasible to expect them to do so. It would also be invalid to
expect related model elements to be in “close proximity” (time and space). Related
model changes could be done independently by multiple designers – at different times
and in different diagrams. Likewise, single designers may concurrently perform
multiple unrelated model changes. Any heuristic that was to infer relationships among
model elements based on the time the changes happened or their location would be
fundamentally flawed and useless.

This paper demonstrates that it is possible to automatically recover hidden
dependencies among model changes through the help of consistency rules, well-
formedness rules, and other design constraints [5] that typically exist and are enforced
during software modeling. Constraints are specific to the modeling language or
application domain. But our approach should be applicable to any modeling language
for which such constraints are definable. In our experience, most modeling languages
have such constraints and constraints are freely definable by the user.

We previously demonstrated how to detect [5] and fix [6] inconsistencies in design
models – but their use for recovering hidden dependencies among model changes is
new. The designer first selects previously discarded versions of model elements for
undoing (manual input) and our approach automatically evaluates whether the
undoing of the designer-selected versions causes inconsistencies. If it does then our
approach recursively tries to resolve the inconsistencies by automatically considering
other undoing choices that have the potential of fixing the inconsistencies. If it finds
them then our approach informs the designer of what other model elements to undo to
avoid inconsistencies.

Our approach is well-defined and precise. Its computational efficiency and
scalability were evaluated through the empirical analysis of large, third-party,
industrial software models. Since it detects dependencies among model elements
based on model constraints, the quality of the undoing is as complete as the defined
model constraints are complete. Correctness was assessed by validating whether the
approach was able to recover a consistent state of the model after undoing (if it ever
existed). Of course, our approach does not presume the models to be fully consistent
[16]. Pre-existing inconsistencies are simply ignored.

2 Illustrative Example

To illustrate the benefits of the selective undoing of model changes, consider the
video-on-demand system in Figure 1. The left and middle models represent two
existing model versions (snapshots), each containing three different diagrams
(structural, scenario, behavioral). The top diagram of version 1 shows the static
structure of the system in form of a class diagram: the display responsible for
visualizing videos and receiving user input; the streamer responsible for downloading
and decoding of video streams. The middle diagram presents a particular usage
scenario in form of a sequence diagram. This diagram describes the process of
selecting a movie and playing it. Finally, the bottom diagram shows the behavior of
the streamer in form of a statechart diagram (a toggling between two states).

 Selective and Consistent Undoing of Model Changes 125

Fig. 1. Two Versions of the Video-on-Demand System and Result of Undoing connect

Version 2 (Figure 1 middle) depicts a later design snapshot of the video-on-
demand system. The designer has made several design changes. It has been decided
that having a single method for both playing and pausing movies is no longer desired.
Instead, the designer renamed the playPause() method to play() and created an
additional method named pause(). The sequence diagram was adapted accordingly.
Additionally, the connect() method in Streamer was deleted and the behavioral
diagram of the Streamer and the scenario were adapted (e.g., selecting a movie no
longer requires explicitly connecting to the streamer).

The illustration does not depict logical dependencies among model elements in the
different diagrams explicitly; however, they are present in form of model constraints.
These constraints (often called consistency rules) describe conditions that a model
must satisfy for it to be considered a valid model. Table 1 describes two such
constraints on how UML sequence diagrams relate to class and statechart diagrams.
Constraint 1 requires the name of a message to match an operation in the receiver’s
class. If this constraint is evaluated on message stream in the sequence diagram in
Figure 1 (version 1) then it first computes all operations of the message’s receiver
class. The receiver of the stream message is the object streamer of type Streamer and
the class’ methods are stream(), wait(), and connect(). The constraint is satisfied (i.e.,
consistent) because the set of operation names in Streamer contains one with the
name stream – the name of the message. Constraint 2 states that the sequence of
messages in the sequence diagram must correspond to allowed events in the statechart
that describes the behavior of the receiver’s class. The given UML models are
internally consistent (for simplicity) which is not required by our approach.

Table 1. Sample Constraints (taken from literature)

Constriant
1

Name of message must be declared as operation in receiver class
operations=message.receiver.base.methods
return(operations->name->contains(message.name))

Constraint
2

Sequence of messages must correspond to events
start=state transitions that correspond to first message
return (start->exists(message sequence equal reachable sequence from start))

126 I. Groher and A. Egyed

Now imagine that the designer desires to recover the state of the model where the
connect() message in the sequence diagram still existed (from version 2 to version 1)
– without having to undo other changes that were made since (e.g., separate
operations play and pause). The right of Figure 1 presents the desired result of this
undoing which is a compromise between version 1 and version 2. It illustrates the
challenge of selective undoing because simply recreating the connect message is
insufficient since it causes two inconsistencies (no such operation exists in Streamer
and no such transition exists in the statechart because both were deleted in version 2).
Because of the logical dependency between this message in the sequence diagram and
the operations defined in the message’s receiver class (cf. Constraint 1 in Table 1) we
also need to undo the Streamer class to a version where the connect() operation
existed. Further, because of the dependency between the connect() message and the
transitions in the statechart (cf. Constraint 2 in Table 1) we need to undo the first
transition to a version where it was named connect. However, we do not wish to undo
the many other, unrelated changes. For example, the decision to change the
playPause() operation in version 1 into separate operations play() and pause() in
version 2 should not be affected by the undoing of the connect() message.

3 Related Work

Existing version control systems such as CVS [1] or Subversion [2] support undoing
of entire models to any version but the granularity is typically to coarse grained to
support selective undoing of individual model elements. Even a finer-grained version
control system would not solve the problem because such systems are not able to
automatically infer logical dependencies among model changes. Undo mechanisms as
provided by most modeling tools are much more fine-grained than versioning
systems. However, their change history is typically not persistent and the undoing is
purely chronological, which causes the undo of intermittent changes which may not
be related.

Selective undoing requires exploring the different versions of model elements that
have existed in the past. To that extent, our approach treats the model elements with
versions as “variables” and tries to set them such that inconsistencies are minimized.
The constraint satisfaction problem (CSP) [10] and MaxSAT are thus related to our
approach. In CSP, a constraint-based problem comprises a set of variables and a set of
constraints across the variables. Solution techniques (CST) are capable of computing
feasible values for all variables for all constraints (i.e., versions that satisfy all the
consistency rules). Indeed, our approach makes use of how CST eliminates infeasible
choices but not how the remaining ones are validated. Our approach also borrows
from existing optimizations such as the AC3 optimization [11] which maps choices to
affected constraints to efficiently determine what part of a model to re-evaluate when
it changes (i.e., change=undoing). Unfortunately, CSP typically does not scale,
especially not for large software models.

Truth maintenance systems (TMS) [4] focus on facts that make constraints hold.
This is similar to our approach where logical dependencies among changes are
captured to allow for an automatic recovery during undoing. TMS require the
existence of the relations in advance which is not the case in our approach. The

 Selective and Consistent Undoing of Model Changes 127

dependencies are recovered automatically by observing constraints during their
evaluation. Also TMS require the impact of constraints to be modeled from all
perspectives (all kinds of changes) which is traditionally not done for modeling
languages and thus it would be impractical to apply TMS here.

The approach by Mehra et al. [12] supports differencing and merging of visual
diagrams. Semantic problems that arise during the merging process can be detected
(which is similar to our approach) but not resolved automatically. Furthermore, our
goal is not to fix inconsistencies during undoing that have existed in the past nor does
it require doing so. Thus our work supports living with inconsistencies [3, 8].

4 What Is the Problem?

4.1 Definitions and Input

As input, our approach requires a model and a change history. Our approach either
computes the change history by comparing different model versions (offline or legacy
models) or by monitoring the designer and recording the model changes (online). For
undoing, a designer must select a Location (or set thereof) which is a field of a model
element (ModelElementFields) and must choose an earlier version. For example,
fields of a UML class include its name, owned operations, and attributes. A Version is
thus a value for a Location (cf. Figure 2).

Fig. 2. A Location, its Current Value, and previous Values

The list of all available locations for undoing is thus the list of all fields of model
elements in the model where the number of versions is greater than 1. An undo is
simply the assignment of a Version to a Location (only one version can be assigned to
a location at any given time) although different locations could be assigned different
versions (the following uses a syntax similar to OCL).

ntFieldsModelElemeLocation ∈
)1().|:(: >→→= sizeversionslLocationlselectntFieldsModelElemeLocations

4.2 User Actions and Impact

The user initiates the undoing by selecting one or more locations and versions. For
example, in the video-on-demand illustration in Section 2, the user chooses to restore
the connect() message. The approach automatically creates, modifies, or deletes the
model element(s) selected for undoing. If the model element was deleted then
undoing must re-create it and modify it to reflect the desired version (i.e., all its fields
must be set in addition to creating the model element). If the element still exists then

128 I. Groher and A. Egyed

it must be modified or deleted. For undoing the connect message, we need to re-create
the message, name it connect, and restore its other fields (e.g., including the ones that
map it to a specific location in the sequence diagram). The undoing changes the
model, which, in turn, affect the consistency of the model. User-induced undoing thus
may cause inconsistencies because:

1. Incomplete undos: Caused by an incomplete selection of locations and versions.
Additional locations need to be undone to solve the inconsistencies and the user
needs to be given choices on what else to undo also.

2. Incompatible undos: The user selected locations and versions are incompatible. In
this case the inconsistencies cannot be resolved and the user needs to be notified of
the incompatibility.

Existing technologies for consistency checking [5] are able to identify inconsistencies
caused during undoing. But consistency checking alone is not the solution to the
problem. We also need to identify which combinations of other undoing resolves the
inconsistencies.

4.3 Naïve but Unscalable Solution

To solve the problem we could automatically try other undos to see whether they
resolve the inconsistencies caused by the user-initiated undoing. The tricky part is to
find some combination of additional undos that resolve the inconsistencies caused by
the user actions without causing new inconsistencies.

A correct and simple solution would be to try all possible combinations of
locations and their versions available in the change history (brute force solution). The
computational complexity of such a brute force evaluation is unfortunately O(#C *
#versions#locations) – exponential with the number of locations as the exponential factor
and the number of versions as the exponential base. #C represents the total number of
constraints imposed on the model. Table 2 illustrates the futility of the brute force
approach on five, large UML models. # Snapshots shows the number of model
snapshots we compared. # Changes shows the total number of model changes from
version 1 to version n (note only those changes are included that are processed by the
constraints included in this study). # Locations shows the number of locations the
model consists of. # Combinations shows the number of combinations we would need
to evaluate when using a naïve, brute force approach for selective undoing (AV#Changes
where AV is the average number of versions per location that has changed).

Table 2. Computational Complexity

 #
Snapshots

Changes

Locations

Combinations

caBIO 3 101 11,422 2.81101

Calendar 2 73 17,943 2.073
UMS 5 98 14,874 3.1598
Flipper 4 55 6,338 3.6955
anonymous 2 104 156,572 2.0104

 Selective and Consistent Undoing of Model Changes 129

The table shows that the number of combinations (# Combinations) is unmanageable
regardless of model size. The next section presents our solution.

5 Undoing Model Changes

In order to efficiently undo design changes we have to be able to:

1. detect inconsistencies caused during undoing quickly and
2. identify other model elements whose undoing resolve these inconsistencies

Fortunately, part 1 was already solved by our previous work [5]. We use the
Model/Analyzer approach for instant consistency checking to detect inconsistencies
caused by the user-triggered undo. Part 2 (the automatic fixing of inconsistencies
caused by exploring previous model element versions) is new and thus the focus of
the remainder of this paper. As part 2 builds on top of part 1, we briefly summarize
our solution to part 1 in the next section.

5.1 Part 1: Incremental Consistency Checking

The Model/Analyzer approach [5] (previously known as UML/Analyzer) is capable
of quickly and correctly evaluating the consistency of models after changes. This
approach treats every evaluation of a constraint separately. It essentially instantiates a
constraint as many times as there are model elements in the model that must be
evaluated by that constraint. For example, constraint 1 in Table 1 must be evaluated 4
times for version 1 in Figure 1 – once for every message. The Model/Analyzer
approach thus maintains 4 constraint instances (C1_selectVideo, C1_playPause,
C1_connect, C1_stream). All 4 constraint instances are evaluated separately as they
may differ in their findings (although all are currently consistent). To support
incremental consistency checking, the approach monitors the behavior of the
consistency checker to identify which model elements a constraint instance accesses
during its evaluation. If one or more of these model elements change then the
constraint instance must be re-evaluated. For example, constraint 1 in Table 1
compares message names and operation names. However, it does not randomly access
operations and messages. Instead, the constraint starts at a predefined message and
navigates the model to first identify the message receiver object (UML model element
of type Lifeline), next accesses the class that this object instantiates, and finally
accesses the operations of that class. The scope of the constraint is that a subset of
ModelElementFields and consists of the message itself, its receiver, the receiver’s
base class, and the operations of this class. On a concrete example (cf. Figure 1,
version 1), the evaluation of the constraint instance C1_playPause accesses the
message playPause() first, then navigates to the message’s receiver object display, its
base class Display, and finally the methods selectVideo(), and playPause(). This list
of model elements accessed during the evaluation of constraint instance
C1_playPause is defined to be the scope of this constraint instance – it is observable
automatically. Obviously, if the message name changes, the operation name changes,
or certain other model elements part of the scope change, then the consistency is in
jeopardy. In such a case, constraint C1_playPause is affected by the change and must

130 I. Groher and A. Egyed

be re-evaluated. The evaluation of other constraint instances have different (but often
overlapping) scopes. Using the Model/Analyzer approach we can compute the
constraint instances affected by a location. It is simply all constraint instances where
the location is part of their scope.

))(.|:(:):(lincludesscopecConstraintccollectsConstraintLocationlnstraintsAffectedCo →→=

The changes caused during undoing thus trigger automated re-evaluations of all those
constraints that contain the changed location(s). With the creation and deletion of
model elements, constraints must also be re-instantiated or disposed of. This
capability also existed and was discussed in [5, 6].

The undoing is complete if the changes triggered do not cause inconsistencies. On
the other hand, if the undoing of model elements (i.e., the deletion, creation, or
modification) causes inconsistencies then further undoing may be necessary. In the
example, the undo of the message connect() to a version where it existed causes two
inconsistencies because the Streamer class no longer contains the corresponding
operation with the name connect(). Also, the statechart no longer contains a transition
with the name connect(). The undoing thus violates two constraint instances of
constraints 1 and 2 defined in Table 1 (it is important to observe here that with
constraint instances we are in essence referring to the model elements in the scope
and no longer to the types of model elements). Table 3 reveals that a constraint is
problematic if it was consistent before the undoing but no longer is thereafter; or if the
undoing causes the instantiation of a constraint that is then inconsistent. Both cases
imply that the undoing may have been incomplete (i.e., other model elements may
also need to be undone) or that the undoing may be composed of incompatible
locations. This distinction is explored later.

Table 3. Effects of Undoing Changes on Constraints

After
Constraints

Consistent Inconsistent Disposed

consistent no problem problem no problem

inconsistent no problem no problem no problem

B
ef

or
e

disposed no problem problem no problem

5.2 Part 2: Incremental Version Exploration

If the undoing causes inconsistencies then our approach investigates these inconsistencies
and attempts to fix them by exploring additional locations to undo that would resolve
them (first individually, then combined). We initially presume that an inconsistency
caused during undoing is caused due to incomplete undoing. Our approach thus searches
for additional locations to undo such that they resolve the inconsistency at hand. If no
such locations can be found then the inconsistency must have existed previously and thus
cannot be resolved; or the user-selected undo included incompatible versions (only
applies if the user selected two or more locations for undoing).

Figure 3 presents a sketch of the algorithm. The approach first changes the user-
selected locations to the versions selected, The Model/Analyzer approach will identify

 Selective and Consistent Undoing of Model Changes 131

all constraint instances (in the following denoted as constraints for brevity) affected
by this change and also instantiate new constraints if so needed. The
affectedConstraints collection includes all these constraints. The algorithm then
iterates over all affected constraints, evaluates them one by one, and, if the
consistency was affected, adds them to the inconsistencies collection. If
inconsistencies is empty then the undoing is complete. For all inconsistent constraints,
additional undoing is necessary to fix them. In our example of undoing the connect
message, the Model/Analyzer approach identifies the constraints C2_streamer and
C1_connect as affected. C2_streamer refers to an existing constraint whereas
C1_connect was instantiated because the connect message was re-created. Both
constraints are inconsistent after undoing and both constraints needed to be
investigated further to identify additional locations for undoing.

undoSelectedVersions (selectedVersions)
 for all selectedVersions
 affectedConstraints = change(selectedVersions)
 for all constraint:affectedConstraints
 if (not validate(constraint)) inconsistencies.add(constraint)
 end
 if (inconsistencies.size>0) undoAdditionalVersions(inconsistencies)
undoAdditionalVersions (inconsistentConstraints)
 for all constraint:inconsistentConstraints
 locations = validate(constraint)
 for all additionalVersions: locations x versions
 change (additionalVersions)
 if (validate(constrain))
 validAssignment=additionalVersions
 end
 end
 end
 affectedConstraints = IntersectionValidAssignments (validAssignments)
 if (affectedConstraints.size>0)
 undoAdditionalVersions(affectedConstraints)

Fig. 3. Undoing Selected Versions

In [6] we showed how to narrow down the search for fixing inconsistencies. In
essence, an inconsistency can be fixed only by changing one or more model elements
that the inconsistent constraint accessed during its evaluation. We already identified
this list of accessed elements as the scope of a constraint (recall Section 2). To fix
inconsistency C1, we would have to change one or more of these scope elements.
However, only those scope elements can be changed for which we have alternative
versions available.

scopecLocationsConstraintcLocations .:):(∩=

The locations for fixing an inconsistency caused during undoing are simply the
intersection of all valid locations (=model elements for which multiple versions are
available) and the scope elements for that constraint. The undoAdditionalVersions
algorithm explores this. The algorithm iterates over all inconsistent constraints (in
the first run those are the ones identified in the undoSelectedVersions function in
Figure 3) and identifies which locations the constraint accesses during its evaluation
The algorithm then explores the cross product of all possible fixes for each

132 I. Groher and A. Egyed

inconsistent constraint. That is, the algorithm tries all combinations of model versions
for this subset of locations only. An Assignment for a Constraint is one such
exploration where we have to set a Version for every Location encountered by that
constraint (excluding the user-selected versions which are fixed).

)).(|:()(:):(valueversionslrandomLocationlcollectcLocationsConstraintcAssignment →→=

A constraint exploration is then simply the function of an assignment onto a truth-
value such that the truth value reflects the consistency of the constraint for the given
assignment. A valid assignment is defined as an assignment where the constraint
evaluates to true.

trueacEvaluationcAssignmentaConstraintcnmentValidAssig ==∈),(:))(,:(

The ValidAssignments (if size>0) represents additional undos (=model changes) to fix
the inconsistencies caused by the initially user-selected undoing. A ripple effect.
refers to the situation where the additional undos may, in turn, affect additional
constraints. In other words, the inconsistencies caused by the user-selected undoing
can only be resolved by undoing additional model element, which in turn, may cause
more inconsistencies with respect to their affected constraints. This ripple effect is
recursive and terminates only once no more inconsistencies are caused. All valid
assignments that contain versions that differ from the last version require additional
undos. The set of affected constraints thus needs to be incrementally expanded. The
last lines of the undoAdditionalVersions function selects the assignments consistent
with all affected constraints, determines which constraints are affected by these
assignments, and then computes the ripple effect via recursive descend. The recursive
descend terminates when no more inconsistencies are encountered.

Figure 4 illustrates how versions and constraints are incrementally explored for the
example introduced in Section 2. The user chose to undo the connect message. Two
constraints are initially affected (the instantiated constraint C1_connect and the
existing constraint C2_streamer) because both evaluate to false and thus need further
undoing. During evaluation of C1_connect and C2_streamer new locations are
incrementally instantiated (with all their versions as choices). For C1_connect, there
is one such location only: base[operations]. Note that in Figure 4, only the locations
that have versions are displayed. Both versions available for base[operations] are
thus explored and constraint C1_connect is evaluated separately for each one. The
assignment {stream, wait, connect} is valid because it contains the missing operation
connect. The assignment {stream, wait} is not valid as it misses that method. The list
of valid assignments for constraint C1_connect thus contains {stream, wait, connect}.

Because the chosen valid assignment contains an older version of the location
base[operations], we now need to investigate which constraints are affected by the
change of this location (this is no longer a user-selected location and thus the initially
computed list of affected constraints is no longer complete). Two additional
constraints are affected: both C1_wait and C1_stream contain this base[operations]
in their respective scopes and both need to be evaluated now also. Both were
consistent before the undoing of base[operations] and after re-evaluating them, we
find that both a still consistent. This means that the undoing of base[operations] did
not negatively impact these additional constraints and no further undoing is required.
The recursion stops here. If they would have been inconsistent then we would have
had to try the versions of all locations in scope of C1_wait and C1_stream.

 Selective and Consistent Undoing of Model Changes 133

message
connect

C1_connect (0 -> I)

C2_streamer (C -> I)

base[operations]

stream, wait, connect

stream, wait

C1_stream (C)

C1_wait (C)

transition[name]

waiting[outgoings]

streaming[outgoings]

connect

stream

stream, wait

wait

wait, stream

Fig. 4. Incremental Version and Constraint Exploration

Thus far, we only dealt with one of the two initially affected constraints. The other
initially affected constraint was C2_streamer which must be explored next. In its
scope are not one but three locations for undoing. Each location in Figure 4 is
indicated as a triangle and each location has two versions. There are thus 23=8
possible assignments and constraint C2_streamer is explored for all of them. Of these
eight assignments, four are valid assignments ({connect, stream, wait}, {connect,
stream, wait-stream}, {connect, stream-wait, wait}, {connect, stream-wait, wait-
stream}). So, we have several options here. The value of the location transition
[name] needs to be set to connect. The locations waiting[outgoings] and
streaming[outgoings] both have 2 correct choices. Since our goal is minimal undoing,
we prefer to choose the latest versions if we have multiple valid choices. The latest
versions of the two locations (the assignment with the cumulative least amount of
undoing) are selected ({stream, wait} and {wait, stream}). A detailed description of
how assignments are selected is given in the next section. No further constraint is
affected by those locations. The resulting model after all undos corresponds to the
right of Figure 1.

6 Selective Undo with the IBM Rational Software Modeler Tool

Our approach is fully tool supported and integrated with IBM Rational Software
Modeler (RSM) design tool and our Model/Analyzer consistency checking tool. The
consistency checker receives change notifications from RSM and implements
the instant consistency checking and fixing of inconsistencies as described in [5-7].
The consistency rules are written in Java and OCL. The tool also supports the
computation of change histories for legacy models as wells as the recording of fine-
grained change histories.

7 Validation

This section demonstrates that our approach scales - even for models with tens of
thousands of elements. We empirically validated our approach on five versioned,

134 I. Groher and A. Egyed

third-party UML models and 22 types of consistency and well-formedness rules taken
from literature. Table 2 already listed the models which differ substantially in model
size and types of model elements used.

7.1 Computational Complexity

The total number of possible assignments for a constraint is the cross-product of all
versions for all locations encountered by that constraint. The computational
complexity of such an exploration is O(AC * #versions#locations) – or exponential with
the number of locations as the exponential factor and the number of versions as the
exponential base. AC represents the number of constraints affected by an undo. While
exponential growth is daunting in general, we will demonstrate next through
extensive empirical evidence, that in context of single constraint instances, both
#versions and #locations are very small and do not increase with the model size.

Fig. 5. Average Number of Versions per Location

7.2 Scalability Drivers

We measured the number of locations (#locations) of over 140.000 constraint
instances [5] across all five models. There exist a wide range of values between the
minimum and maximum number of locations but the averages stayed constant with
the size of the model. Over 95% of all 140.000 constraint instances evaluated less or
equal than 25 model elements which is an important scalability factor because it
implies that the exponential factor is a constant.

It is also important how many constraints are affected by an undo (AC). In [5] we
computed the number of constraints affected by a single change. We again found a
wide range of values between the smallest and largest number of constraints but the
average also stayed constant with the model size. Our evaluations showed that in
average only 1-10 constraints had to be evaluated.

Now that we have seen that both the number of locations (#locations) and the
number of affected constraints (AC) are small values that stay constant with the size
of the model, we need to look at the remaining scalability factor #versions: the
number of versions per location. Figure 5 depicts the average number of versions per
location for all five models which also appears to stay constant with the size of the

 Selective and Consistent Undoing of Model Changes 135

model with 1.09 versions per location. Indeed, the likelihood for a location to have
versions decreases exponentially with the number of versions (data omitted for
brevity). So, while the evaluation of a constraint is exponentially complex within its
locations and versions, the fact that all exponential factors are small and do not
increase with the size of the model implies that our approach scales.

There is however another potential scalability problem: the incremental
exploration of affected constraints. Our approach only investigates constraints if they
directly relate to changes caused by undos. If an undo causes inconsistencies then
further changes are necessary which may uncover additional, affected constraints. The
exploration, which we referred to as the ripple effect, may in theory snowball into a
very large number of incrementally affected constraints where, perhaps, the
exploration of individual constraints is scalable but not the ripple effect. In Figure 6,
we thus empirically evaluated the average impact of the ripple effect on all five
models. We found that the initial number of affected constraints was between 3 and
4.5 constraints, depending on model but that this number decreased in average with
every ripple and always terminated before the 4 ripple (note: a ripple is a recursive
descend where a change affects constraints which need to be changed which affects
more constraints which…)

Fig. 6. Ripple Effect

7.3 Correctness

Whenever inconsistencies were caused by the undoing of model changes, we also
explored (in both a brute force manner as well as our approach) whether they were
resolvable and could be resolved by our approach. We found in all cases that our
approach was able to compute a consistent undo if such a consistency had existed in
the past. Interestingly, our approach sometimes also resolved inconsistencies that had
always existed. It is unclear to us whether this is a benefit or whether intentionally
unresolved inconsistencies should remain so (i.e., living with inconsistencies). This
feature could be disabled if needed.

7.4 Memory Consumption

In [5] we found that there exists a linear relationship between the model size and the
memory cost for storing the scopes. The memory cost rises linearly with the number

136 I. Groher and A. Egyed

of constraint instances and is O(#constraints * scope size). The storage of the change
history is also manageable because only few model elements change. Since we have
1.09 versions per location, it follows that the memory cost for the change history is
1.09 times the model size plus overhead.

7.5 Threats to Validity

As any empirical study, our exploratory experiments exhibit a number of threats to
validity [15]. A threat to construct validity – are we measuring what we mean to
measure? – is the potential that our validation may underrepresent the construct. We
validated our approach on 5 large-scale, industrial models with tens of thousands of
model elements and up to 5 versions. The models and their versions cover years of
development and we thus believe that they represent typical undoing scenarios found
in industry. The threat to internal validity – are the results due solely to our
manipulations – is selection, in particular the selection of the models and the
consistency rules. The models are different in size and domain and our approach
performed well in all models. Also, the 22 selected consistency rules are covering
nearly a complete set of dependencies between UML class diagrams, sequence
diagrams, and state charts. Regarding conclusion validity we have seen that our
approach scales for large models up to 150.000 locations. With respect to external
validity – can we generalize the results – we took real-world large models
representing realistic application contexts. Our empirical validation does not
definitively proof that more versions are possible per model elements but it does
confirm that most model elements never change (these models and their versions
cover years of development). Even if the actual number of versions is higher, it is not
a problem because, in general, few model elements change. However, one could
argue that when using versioned models, we do not always see all changes because a
location may change multiple times between versioned model snapshots. Yet, the
versions we used represent major milestones of the system under development and
missing intermediate versions, if they did exist, are likely less interesting results or
else they likely would have been version controlled. The biggest threat to external
validity, however, is that we did not yet assess the usability of our approach by
monitoring and interviewing engineers that used our tool. This is part of our future
work. We plan to evaluate how difficult it is for users to manually fix inconsistencies
introduced during selective backtracking compared to using our tool.

8 Conclusion

This paper discussed an approach for the selective undoing of design changes.
Designers can explore earlier alternatives concurrently and undo them independently
if needed. This is also beneficial if multiple designers are working on the same model
and want to undo changes without necessarily undoing other designer’s changes.
Selective undoing of changes is a difficult problem because of the complex, logical
dependencies among design changes. We solved this problem by automatically
discovering dependencies among versions of model elements through the help of
consistency rules. We demonstrated on five case studies that our approach scales and

 Selective and Consistent Undoing of Model Changes 137

produces correct results. Our approach does not require a consistent model as input.
Neither is it limited to certain constraints only.

Acknowledgments. We like to thank Alexander Reder for his help on the tool. This
research was funded by the Austrian FWF under agreement P21321-N15.

References

[1] Concurrent Versions System (2009), http://www.nongnu.org/cvs/
[2] Subversion (2009), http://subversion.tigris.org/
[3] Balzer, R.: Tolerating Inconsistency. In: Proceedings of 13th International Conference on

Software Engineering (ICSE), pp. 158–165 (1991)
[4] Doyle, J.: A Truth Maintenance System. Artificial Intelligence 12, 231–272 (1979)
[5] Egyed, A.: Instant Consistency Checking for the UML. In: Proc. of the 28th Intern. Conf.

on Software Engineering, Shanghai, China, pp. 381–390 (2006)
[6] Egyed, A.: Fixing Inconsistencies in UML Design Models. In: Proceedings of the 29th

International Conference on Software Eng., pp. 292–301 (2007)
[7] Egyed, A., Wile, D.S.: Support for Managing Design-Time Decisions. IEEE Transactions

on Software Engineering 32, 299–314 (2006)
[8] Fickas, S., Feather, M., Kramer, J.: Proceedings of ICSE 1997 Workshop on Living with

Inconsistency, Boston, USA (1997)
[9] Gall, H.: Of Changes and their History: Some Ideas for Future IDEs. In: Proc. of 15th

Working Conf. on Reverse Eng., Antwerp, Belgium, p. 3 (2008)
[10] Henteryck, P.: Strategic Directions in Constraint Programming. ACM Computing

Surveys 28 (1996)
[11] Mackworth, A.K.: Consistency in Networks of Relations. Journal of Artificial

Intelligence 8, 99–118 (1977)
[12] Mehra, A., Grundy, J., Hosking, J.: A Generic Approach to Supporting Diagram

Differencing and Merging for Collaborative Design. In: Proceedings of the 20th
International Conference on Automated Software Engineering (ASE), Long Beach, CA,
pp. 204–213 (2005)

[13] Robbes, R., Lanza, M.: A Change-based Approach to Software Evolution. Electron.
Notes Theor. Comput. Sci. 166, 93–109 (2007)

[14] Tarr, P., Osher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Proceedings of the 21st International
Conference on Software Eng., pp. 107–119 (1999)

[15] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Dordrecht (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

